LE THÉORÈME DE

CHEVALLEY-WARNING

FT LA PREUVE DU THÉORÈME D'ERDÖS-GINZBURG-ZIV.

Théorème (Chevalley-Warning). $Soit(f_a)_{a \in A}$ une famille de polynômes de $K[X_1, \ldots, X_m]$, indexée par un ensemble A. On suppose que les degrés de ces polynômes vérifient :

$$\sum_{a \in A} \deg(f_a) < m.$$

On pose $V\subset K^m$ l'ensemble des points où tous les f_a s'annulent simultanément. Le cardinal de V vérifie :

$$\operatorname{card}(V) \equiv 0 \ [p].$$

Preuve. On considère le polynôme :

$$P = \prod_{a \in A} (1 - f_a^{q-1})$$

et on va faire ça progressivement :

(1) Il est clair que $P(x) = 0_K$ si $x \in V$ et s'il existe $a \in A$ tel que $f_a(x) \neq 0$ alors, puisque que K^{\times} est cyclique d'ordre q-1, on a $f_a^{q-1}(x) = 1_K$ et donc $P(x) = 0_K$. Finalement, en définissant $S(f) := \sum_{x \in K^m} f(x) \in K$ pour tout polynôme $f \in K[X_1, \ldots, X_m]$, on a :

$$S(P) = \sum_{x \in \mathbb{R}^n} P(x) \equiv \operatorname{card}(V)$$
 and

(2) On va montrer que $S(P) = 0_{\mathbb{K}}$. D'abord, la condition $\sum_{a \in A} \deg(f_a) < m$ entraîne $\deg(P) < m(q-1)$. Il suffit donc de montrer $S(X^u) = 0_{\mathbb{K}}$ pour tout multi-indice $u = (u_1, \dots, u_m)$ tel que $\sum_{i=1}^m u_i < m(q-1)$. Par le principe des tiroirs, il existe un indice i tel que $u_i < q-1$. On calcule :

$$S(X^u) = S(X_i^{u_i})S(X_1^{u_1} \dots \hat{X}_i^{u_i} \dots X_m^{u_m}).$$

(3) Ah oui, mais si $y \in K^{\times}$ est un générateur de K^{\times} et avec la convention $0^0 = 1$:

$$S(X_i^{u_i}) = \sum_{x \in \mathbf{K}} x^{u_i} = \sum_{x \in \mathbf{K}^{\times}} (yx)^{u_i} = y^{u_i} S(X_i^{u_i}).$$

Comme $u_i < q-1$, on est sûr que $y^{u_i} \neq 1_K$ et donc $S(X_i^{u_i}) = 0 = S(X^u)$

(hmm: Vosley-1,) 1

Z n = 0)

KFF;

(4) En conclusion, on a montré :

$$\operatorname{card}(V)1_{\mathbf{K}}=0_{\mathbf{K}}$$

et comme K est de caractéristique p, on a bien :

$$\operatorname{card}(V) \equiv 0 \ [p].$$

П

Théorème (Erdös-Ginzburg-Ziv). Soit $n \in \mathbb{N}$. Parmi 2n-1 entiers a_1, \ldots, a_{2n-1} , on peut toujours en trouver n dont la somme est divisible par n. En plus, c'est optimal.

PREUVE. Il faut commencer par :

Étape 1. Le cas où l'entier n est premier auquel cas il sera noté p.

On sa place dans le corps $K = \mathbb{F}_p$ et notera \overline{a} la classe modulo p de $a \in \mathbb{N}$. On va applique le théorème de Chevalley-Warning avec les polynômes :

$$P_1(X_1,\ldots,X_{2p-1}) = \sum_{i=1}^{2p-1} X_i^{p-1} \text{ et } P_2(X_1,\ldots,X_{2p-1}) = \sum_{i=1}^{2p-1} \overline{a}_i X_i^{p-1}.$$

Puisque $0 \in \mathbf{K}^{2p-1}$ est une racine commune à ces polynômes, on est assuré de l'existence d'une racine on triviale notée $(x_1, \dots x_{2p-1})$. Il y a deux choses à voir :

- (1) D'abord comme $x_i^{p-1} = 1_{\mathbf{K}}$ si $x_i \neq 0_{\mathbf{K}}$ et $x_i^{p-1} = 0_{\mathbf{K}}$ sinon, on en déduit (toujours car \mathbf{K} est de caractéristique p) que la relation $P_1(x_1, \ldots, x_{2p-1}) = 0_{\mathbf{K}}$ implique qu'il existe très exactement p éléments x_{u_1}, \ldots, x_{u_n} non nuis.
- (2) C'est fini en considérant la deuxième relation $P_2(x_1,\ldots,x_{2n-1})=0_K$ puisque :

$$0_{\mathbf{K}} = P_2(x_1, \dots, x_{2p-1}) = \sum_{i=1}^p \overline{a}_{n_i} x_{n_i}^{p-1} = \sum_{i=1}^p \overline{a}_{n_i}$$

Étape 2. Le cas général où l'entier p redevient $n \in \mathbb{N}$.

On va procéder par récurrence (forte) sur $n \in \mathbb{N}$. L'initialisation pour n=1 n'est pas difficile. Supposons donc le résultat montré jusqu'au rang n-1, $n \geq 1$. Si n est premier, c'est l'étape 1, sinon on écrit n=pn' avec p premier et n' < n.

- (1) On écrit 2n-1=(2n'-1)p+p-1 et par hypothèse de récurrence on peut construire (2n'-1) sous-ensembles disjoints de $E:=\{a_1,\ldots,a_{2n-1}\}$ de la façon suivante : pour $i\in\{1,\ldots,2n'-1\}$, $E_i\subset E\setminus (E_1\cup\ldots\cup E_{i-1})$ est de cardinal p et la somme de ses éléments est divisible par p. À la fin, $E\setminus (E_1\cup\ldots\cup E_{2n'-1})$ est de cardinal p-1 et on ne peut plus continuer.
- (2) Pour i ∈ {1,..., 2n' − 1}, on note s_i la somme des éléments de E_i et s_i = ps'_i. On applique encore l'hypothèse de récurrence avec les s'_i : il existe k₁,..., k_{n'} tel que n' divise s'₁ + ... + s'_{k...}.

(3) Pour conclure, il suffit de considérer le sous-ensemble

$$\bigcup_{j=1}^{n'} E_{k_j} \subset \{a_1, \dots, a_{2n-1}\}$$

qui est de cardinal pn'=n et dont la somme de ses éléments vant

$$\sum_{j=1}^{n'} s_{k_j} = p \sum_{j=1}^{n'} s'_{k_j}$$

qui est divisible par pn' = n.

Étape 3. Le résultat est optimal.

On considère (2n-2) entiers parmi lesquels (n-2) valent 0 et (n-1) valent 1.

On ne peut pas troiver n éléments dont la somme soit divisible par n, puisqu'elle est toujours inférieure à n et strictement positive.

Références. M. Zavidovique, Un Max de Maths

120 Anneaux Z/nZ. Applications.

121 Nombres premiers. Applications.

123 Corps finis. Applications.

142 Algèbre des polynômes à plusieurs indéterminées. Applications.

144 Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications